Prospective Trial of Advanced Airway Management Strategies in Out-of-Hospital Cardiopulmonary Arrest (Protocol Proposal)

Henry Wang, UAB
Jason McMullan, Cincinnati

Disclaimers

- Idea developed within the ROC
- Many in the NETT have expressed interest
- Purpose is to gauge continued interest
- Goal is to move forward with either/both groups
- As this is a preliminary discussion, Henry has NOT officially brought this up at the ROC (yet)

Die at least once

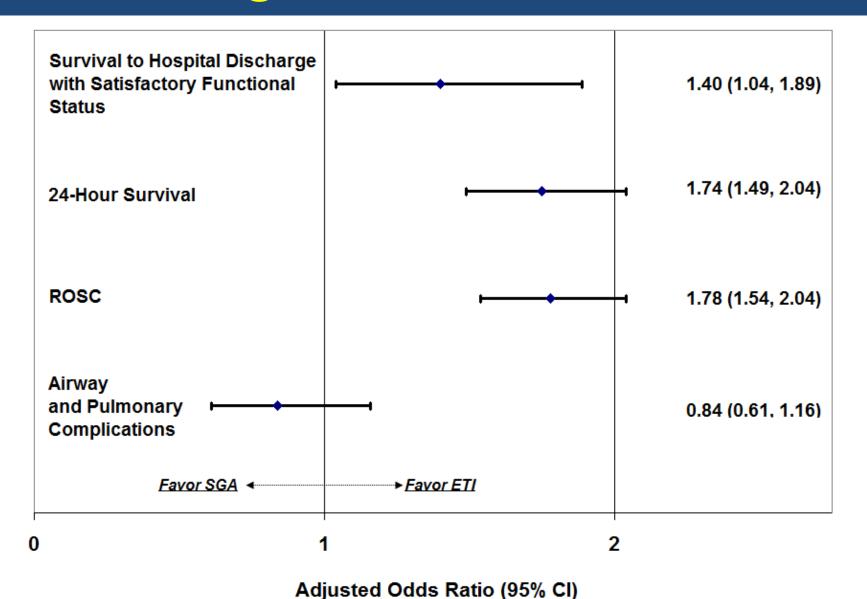
Get a prehospital airway

Are left at the scene (still dead)

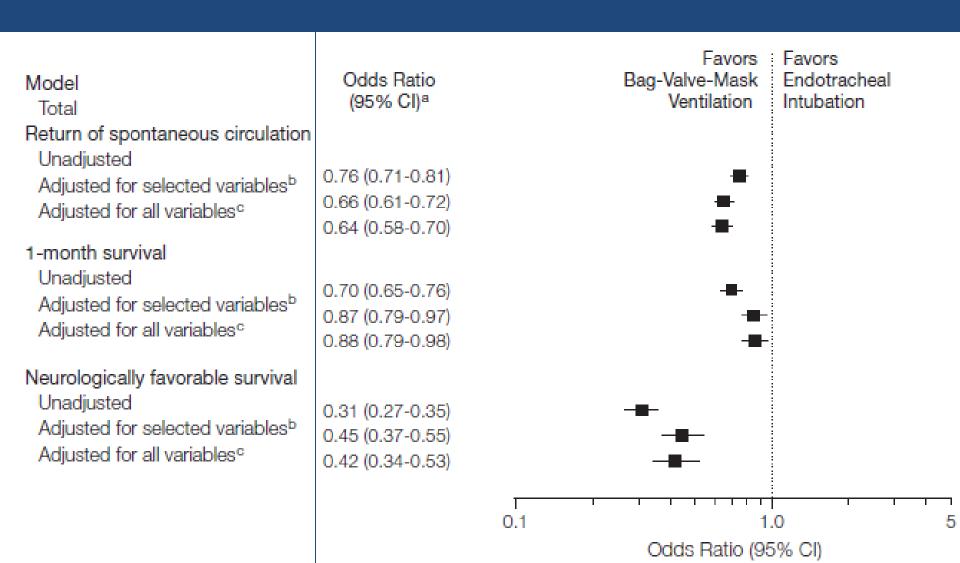
Get ROSC

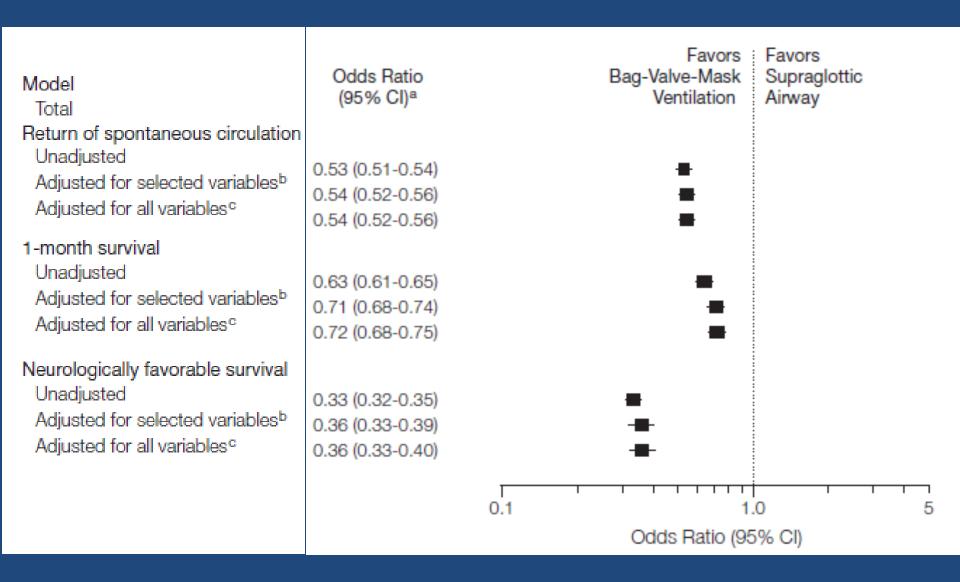
Get admitted

Get discharged


Survive "neurologically intact"

Choices Matter




Wang, Resuscitation 2012

Hasegawa, JAMA 2012

Hasegawa, JAMA 2012

Hasegawa, JAMA 2012

		Advanced Airway Management				
	Overall		Endotracheal Intubation		Supraglottic Airway	
Model	No. (%)	OR (95% CI) vs Bag-Valve-Mask ^a	No. (%)	OR (95% CI) vs Bag-Valve-Mask ^a	No. (%)	OR (95% CI) vs Bag-Valve-Mask
Total	281 522 (43.4)		41 972 (6.5)		239 550 (36.9)	
Neurologically favorable survival Unadjusted	3156 (1.1)	0.38 (0.36-0.39)	432 (1.0)	0.35 (0.31-0.38)	2724 (1.1)	0.38 (0.37-0.40)
Adjusted for selected variables b		0.38 (0.37-0.40)		0.41 (0.37-0.45)		0.38 (0.36-0.40)
Adjusted for al variables c		0.32 (0.30-0.33)		0.32 (0.29-0.36)		0.32 (0.30-0.33)

McMullan, AHA/NAEMSP 2013/4

Outcome	All Patients Receiving ETI or SGA (n=8,745) OR (95% CI)			
Sustained ROSC				
Unadjusted	1.43 (1.27-1.62)			
Adjusted for Propensity Score (quartile)†	1.37 (1.20-1.55)			
Adjusted for Propensity Score and Confounders‡	1.35 (1.19-1.54)			
Survival to Hospital Discharge				
Unadjusted	1.30 (1.07-1.58)			
Adjusted for Propensity Score (quartile)†	1.35 (1.10-1.67)			
Adjusted for Propensity Score and Confounders‡	1.41 (1.14-1.76)			
Survival to Hospital Discharge with Good Neurologic Outcome				
Unadjusted	1.35 (1.06-1.70)			
Adjusted for Propensity Score (quartile)†	1.39 (1.09-1.79)			
Adjusted for Propensity Score and Confounders‡	1.44 (1.10-1.88)			

McMullan, AHA/NAEMSP 2013/4

Outcome	All Patients (n=10,630) OR (95% CI)			
Sustained ROSC				
Unadjusted	1.25 (1.12-1.39)			
Adjusted for Propensity Score (quartile)†	1.11 (0.99-1.24)			
Adjusted for Propensity Score and Confounders‡	1.07 (0.94-1.20)			
Survival to Hospital Discharge				
Unadjusted	3.67 (3.19-4.23)			
Adjusted for Propensity Score (quartile)†	2.96 (2.54-3.45)			
Adjusted for Propensity Score and Confounders‡	2.96 (2.50-3.51)			
Survival to Hospital Discharge				
with Good Neurologic Outcome				
Unadjusted	5.19 (4.42 -6.11)			
Adjusted for Propensity Score (quartile)†	4.13 (3.46-4.93)			
Adjusted for Propensity Score and Confounders‡	4.24 (3.46-5.20)			

In OHCA patients who receive advanced airway management by EMS, is ETI, compared to SGA, associated with improved neurologic-intact survival?

Objective

- Compare outcomes after adult out-ofhospital cardiopulmonary arrest (OHCA) between:
 - Endotracheal intubation (ETI)
 - Supraglottic airway (SGA)

Design Overview

Prospective randomized trial

- Cluster randomization
- Non-inferiority/equivalence design

Inclusion

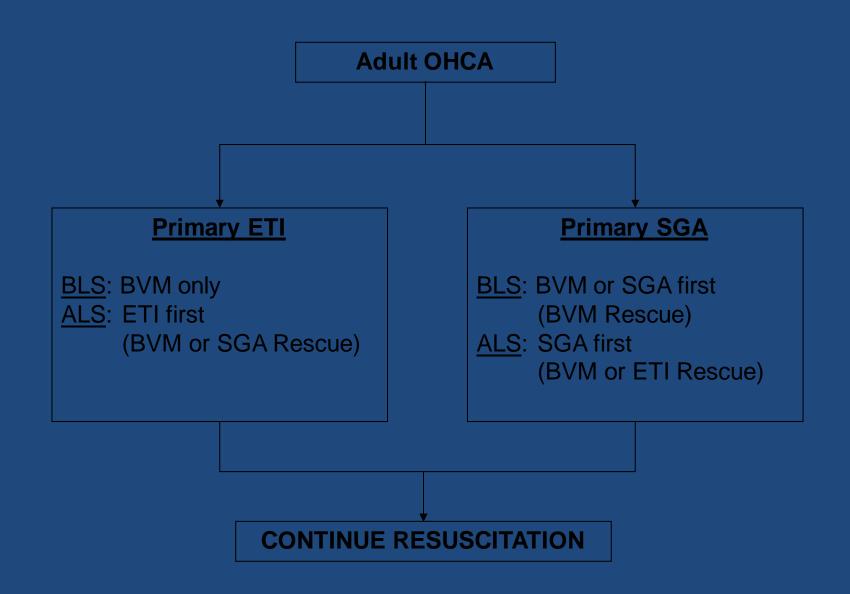
Adult OHCA requiring advanced airway

Exclusion

- Children
- Trauma
- DNAR
- Advanced airway not needed
- Supraglottic airway not available

Outcome Measures

- Primary (survival)
 - -Sustained ROSC
 - -24-Hour Survival
 - —Survival to Hospital Discharge with MRS≤3



Outcome Measures

- Secondary (process/care)
 - Chest compression fraction for first 10 minutes of resuscitation
 - Airway insertion success
 - Airway insertion first-pass success
 - Number of airway insertion attempts
 - Time to successful airway insertion
 - Emergency Department hyperoxia
 - Airway anatomic injury
 - Inpatient pneumonia or aspiration pneumonitis
 - Inpatient acute lung injury

Strive for FIVE

- I believe that we should be selfish (or enthusiastic) about supporting such a trial
- Results could impact scope of practice, training, and clinical care for EMS while improving your odds of meaningful survival
- Bio-rationale: airway management affects CPR metrics, hypervent, hyperox, ITP, ICP, etc.
- Neurologic-intact survival is everybody's mission

Sample Size

- 18,705 Subjects
- Assumptions:
 - Survival with MRS ≤3 → 4.7%
 - Based on PRIMED data patients receiving airway only
 - 90% power
 - 25% relative change in survival
 - 6 interim analyses
 - 5% inflation for cluster randomization
 - Stopping for superiority and futility
- Other scenarios possible