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The impact of covariate adjustment at
randomization and analysis for binary
outcomes: understanding differences
between superiority and
noninferiority trials
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The question of when to adjust for important prognostic covariates often arises in the design of clinical trials, and
there remain various opinions on whether to adjust during both randomization and analysis, at randomization
alone, or at analysis alone. Furthermore, little is known about the impact of covariate adjustment in the context
of noninferiority (NI) designs. The current simulation-based research explores this issue in the NI setting, as
compared with the typical superiority setting, by assessing the differential impact on power, type I error, and bias
in the treatment estimate as well as its standard error, in the context of logistic regression under both simple and
covariate adjusted permuted block randomization algorithms.

In both the superiority and NI settings, failure to adjust for covariates that influence outcome in the analysis
phase, regardless of prior adjustment at randomization, results in treatment estimates that are biased toward
zero, with standard errors that are deflated. However, as no treatment difference is approached under the null
hypothesis in superiority and under the alternative in NI, this results in decreased power and nominal or conser-
vative (deflated) type I error in the context of superiority but inflated power and type I error under NI. Results
from the simulation study suggest that, regardless of the use of the covariate in randomization, it is appropriate
to adjust for important prognostic covariates in analysis, as this yields nearly unbiased estimates of treatment as
well as nominal type I error. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

The noninferiority (NI) trial design is growing progressively more popular as the need for comparable
therapies with secondary advantages increases. The challenges that arise in the design and analysis of
such a trial have been discussed in the Food and Drug Administration Guidance on NI trials as well as
methodological research on proper specification of hypotheses, the choice of active control, the determi-
nation of the NI margin, and the appropriate analysis method [1-7]. However, critical gaps in the literature
remain regarding key design issues, specifically the impact of covariate adjustment at both randomization
and at the analysis phase.

In a PubMed search of phase-III clinical trials published in the last 10 years containing the word ‘non-
inferiority’, 44.8% of 58 trials utilized simple randomization and unadjusted primary analyses. Covariate
adjusted randomization and appropriate analysis of covariance or stratification was used in 20.7% of
trials. Covariate adjustment at randomization but not at analysis was done in 25.7%, and adjustment at
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analysis but not at randomization was done in 8.6% of the trials. This review of current practice shows
that there is still considerable variability in the way that clinical trialists use covariate information, a
finding that is not surprising considering the lack of attention it has received in the NI literature.

This manuscript expands the research on covariate adjustment in the NI setting by examining the impact
of adjustment at randomization as well as at analysis using logistic regression models. A simulation
study is conducted to examine the operating characteristics in both superiority and NI settings. Section 2
reviews the existing statistical and clinical literature on covariate adjustment. Sections 3 and 4 present the
simulation methods and results, and Section 5 discusses the differential impact of covariate adjustment
in these two settings.

2. Existing literature

Little work has been published to date to examine the impact of covariate adjustment at both randomiza-
tion and analysis in the context of NI trials. Garrett [4] explains that, due to the reversal of hypotheses
from the superiority setting, there is also a reversal of the impact of errors. Thus, he cautions readers that
the power and type I error is inflated when important prognostic factors are ignored in the NI setting. [4]
However, this work does not take into account the potential impact of the randomization scheme.

It has been shown in a superiority setting that failure to adjust for important prognostic covariates
at either randomization or analysis leads to biased estimates of the treatment effect, the direction and
magnitude of which is dependent on the strength of association between the covariate and outcome,
as well as the level of covariate imbalance across treatment arms [8—16]. Gail et al. [13] illustrate the
nature of this bias via Taylor series approximation in a nonlinear setting. They show that in a linear set-
ting, the estimated treatment effect in an adjusted versus in an unadjusted model are equivalent. In the
nonlinear (i.e. the logistic) setting, they quantify the discrepancy between the adjusted treatment effect
estimate and the unadjusted treatment effect estimate and demonstrate that this discrepancy is nonzero
(i.e. the unadjusted effect will always be biased) except when there is no treatment effect, when there is
no association between covariate and outcome, or when the variance of the covariate is zero. Further-
more, Gail et al. [14] show that the bias tends to be such that the unadjusted effect will underestimate
the adjusted effect if the treatment effect is positive, resulting in a decrease in power, and this effect
holds even when covariates are perfectly balanced. As Robinson and Jewell [15] point out, this underes-
timation of the treatment effect when we fail to adjust for covariates outweighs any benefit in standard
error [13-18].

The impact of covariate adjustment at randomization has been evaluated in the context of superior-
ity. Kahan and Morris [8] illustrate that, for continuous, binary, and time-to-event outcomes, stratified
randomization creates correlation between treatment arms. Thus, unadjusted analyses in this con-
text result in decreased power and type I error, as well as inflated standard errors of the treatment
effect [8].

In light of the statistical evidence in favor of adjusted analyses, it is clear that important prognostic
covariates that are included in the randomization scheme should also be included in the final analysis in
the form of a properly specified analysis of covariance [2, 10, 19], and in fact, this results in unbiased esti-
mates of treatment effect, as well as nominal power and type I error. However, the full impact of covariate
adjustment in the NI setting remains to be demonstrated and is a topic worthy of further investigation.

3. Simulation studies

Parameters are specified according to both the hypothesis of interest (null or alternative) and the scenario
of interest (superiority or NI). Four simulation studies were designed to perform simple randomization
and covariate adjusted permuted block randomization in the context of superiority and NI designs. All
simulations conducted both unadjusted and adjusted analyses based on the following models:

Unadjusted : In ( 1 f”) = f, + p,Trt (1)

T
1-—

Adjusted : In ( ) = fo + B, Trt + p,Covariate 2)
T
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The probability of success in the control group (z) was set at 80%. This value was chosen based on an
NI setting, where the active control may have a high probability of success; however, the experimental
treatment offers other advantages such as lower side effects.

3.1. Simulation parameters

The probability of success in the treatment group (), the sample size, and the predetermined margin
were differentially specified depending on the statistical hypothesis to be tested (superiority or NI), but
the simulation strategy remained the same. For the superiority setting, the probability of success in the
treatment group was set at 90% in order to mimic a trial with an expected absolute difference in treatment
of 10%. The null hypothesis is H, : n = m; = 0.80, and the alternative is 7, = 0.80 and 7, = 0.90.
Thus, g, is estimated to be In(1) = 0 under the null hypothesis and In(2.25) = 0.811 under the alternative.
This information was then used to calculate the total sample size of N = 392 subjects in order to ensure
power of 80% when there was no effect of the covariate (g, = 0).

The value of g, was allowed to vary from —3.0 to 3.0 in increments of 0.5 in order to evaluate the
effect of strength of covariate on operating characteristics, and Equations (1) and (2) earlier were used
to derive the intercept, f,, for each scenario. Although it is not expected that any covariate would have a
coefficient as high as 3.0, this range was included in the simulation to examine the theoretical setting.

For the case of NI, we set the NI margin at 0.10, resulting in the following hypotheses:

Hy: np—np>0.10 3)
H] : ﬂ'c_ﬂ"r<0.10 5 (4)

where 7 = 0.80 and 7, = 0.70 under the null and 7. = 7w, = 0.80 under the alternative. This yielded a
f, under the null of —0.539 and under the alternative a value of 0. An odds ratio of 0.583 was derived from
the expected probability of success in each of the two groups, which served as the cutoff for claiming NI.
The values of f, and f,, remained similar to the superiority setting. The total sample size was estimated
as N = 676, so that the power to detect a treatment difference when f, = 0 was again 80%.

It should be noted that the results on the linear/risk difference scale are not necessarily immediately
applicable to the logistic/odds ratio scale but may require translation. The authors present hypotheses
and parameters in terms of the linear scale to facilitate communication with clinical investigators but
then analyze results using logistic regression to avoid convergence issues that would otherwise arise in
the tails of the nonlinear distribution [16]. It is also noteworthy that the sample size has to be increased
slightly when the effect size is translated from a risk difference to an odds ratio [20].

3.2. Simulation strategy

The simulated subject dataset is filled sequentially by first assigning the level of covariate (0 or 1), based
on dichotomization of a random uniform distribution, and then a treatment indicator via either simple
randomization, where the probability that the i patient is assigned to treatment (p, ,,) is 0.5 or permuted
block randomization within each level of the covariate according to the following:

(b/2) (1 + int(i = 1/b)) = n,_y ,,
b(l—intli—1/b)—(Gi—1)

&)

Pim =

where i = subject,b = block size, int = next highest integer value, and n;_; = number previously
assigned to treatment. A block size of six was chosen as a compromise between the authors’ beliefs about
current popular practice and the desire for results to be comparable to those of Kahan and Morris [8],
who used a block size of eight [8]. The probability of success for each patient is assigned as follows:

exp(f, Irt + p,Covariate)

. = ’ 6
Di success 1 + exp(#, Trt + p,Covariate) ©

and again compared with a random uniform distribution for dichotomization. Once the subject table
is populated, unadjusted and adjusted analyses are conducted, and estimates of the odds ratios of the
treatment effect, as well as their standard errors and two-sided 95% confidence intervals, are extracted.
Power, defined as the percentage of trials under the alternative hypothesis in which the lower bound
of the confidence interval for the odds ratio crosses the predetermined margin (> 1.0 for superiority or
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> 0.583 for NI), as well as type I error, defined as the percentage of trials under the null in which the
lower bound of the confidence interval for the odds ratio crosses the predetermined margin, are calculated
across 10,000 iterations. Bias in the estimate of the treatment effect, defined as the average difference
between the estimate and the true value of f;, and bias in the standard error of the estimate of treatment
effect, defined as the mean difference between empirical and model standard errors, are calculated under
the alternative hypothesis in the context of superiority and under the null hypothesis in the context of NI,
as this is where one would expect to find a treatment difference.

4. Simulation results

4.1. Superiority

In the context of superiority (presented in Figure 1), there is a slight loss in power as f, (which represents
the strength of the covariate) moves away from zero in either direction for unadjusted analyses, and a
slight gain in power for adjusted analyses. Furthermore, there appears to be little impact of balancing at
randomization among adjusted analyses, but some improvement of covariate adjusted permuted block
randomization over simple randomization among unadjusted analyses. Type I error, under all scenarios,
yields close to nominal values regardless of the value for f,, with the exception of the scenario that
employed covariate adjusted permuted block randomization coupled with an unadjusted analysis. In this
scenario, type I error decreased as f, moved away from zero in either direction.

Under the alternative hypothesis, we can see that the unadjusted analyses’ treatment effects and stan-
dard errors underestimate those of the adjusted analyses. Furthermore, the bias in the standard error
appears to be less severe for covariate adjusted permuted block randomization than for simple random-
ization due to the correlation it creates. However, the treatment estimate, as well as its accompanying
standard error, is nearly unbiased (a slight positive bias was detected but determined to be minimal) in
adjusted analyses, with negligible effect of covariate balancing at randomization.
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Figure 1. Superiority.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015



Statistics
K. NICHOLAS ET AL.

Power Type | Error
0.95 0.225 oo Simple, Unadj
0.90 0.200 — Simple,AdJ:
0.85 —n—s Perm,Unad!
0.80 0.175 === Perm,Adj
0.75{ 0.150
0.70 0.125
0.65
0.60 0.100
0.55 0.075
0.50 ©-0-® Simple, Unadj 0.050
0.45 —— Simple,Adj ‘
0.40 =—=—=  Perm,Unadj 0.025
0351 : ‘ — Perm.Adj : ! 00004 : : : : : :
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Coefficent for Covariate (B2) Coefficent for Covariate (B2)
Bias in the Treatment Estimate Bias in Standard Error of Treatment Estimate
0.20 0.20
0.15 0.15
0.10 0.10
0.05 0.05
0.00 ¢ } 0.00 — = —g—0—
0.05 0.0 /—' N
-0.10 e-e-¢ Simple, Unadj -0.10 e-e-¢ Simple, Unadj
015 Eacad Simple,Adj 015 Sacad Simple,Adj
: === Perm,Unadj . #—=—=  Perm,Unadj
0201 ‘ 5 PermAdj ‘ I 020 ‘ TR PermAd ‘ ‘
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Coefficent for Covariate (B2) Coefficent for Covariate (B2)

Figure 2. Noninferiority.

4.2. Noninferiority

The operating characteristics in the context of NI (presented in Figure 2) are quite different from
superiority. In this setting, power decreases slightly as f, moves away from zero in either direction for
adjusted analyses, and type I error is nearly maintained regardless of covariate balancing at random-
ization via permuted block. For unadjusted analyses, an opposite effect from that demonstrated in the
context of unadjusted analyses in superiority is observed. Power and type I error is increased as f, moves
away from zero in either direction. This increase in type I error for unadjusted analyses in the presence
of an influential prognostic covariate is greater in simple randomization than in the context of covariate
adjusted permuted block randomization. Type I error rates are nearly maintained for adjusted analyses
regardless of balancing at randomization.

The treatment estimate and its standard error are unbiased for adjusted analyses, whereas the treatment
estimate is biased upward toward zero for unadjusted analyses regardless of balancing at randomization
via permuted block. The standard error of this estimate follows the same pattern as the alternative hypoth-
esis in the superiority setting (namely, standard errors are deflated for unadjusted analyses with covariate
adjusted permuted block randomization yielding a less pronounced effect).

5. Discussion

The results presented earlier demonstrate that adjusting for important prognostic covariates in analysis
is always preferred, regardless of whether the hypothesis to be tested is one of superiority or NI. In a
superiority setting, adjusted analyses yield greater power to detect a treatment difference as compared
with unadjusted analyses, as well as nominal type I error. In a NI setting, adjusted analyses do not have
the added benefit of increased power but are protective against unacceptable increases in type I error.
Furthermore, adjusted analyses yield nearly unbiased estimates of treatment effect in both scenarios and
biases in standard error that seem unavoidable given the nature of the nonlinear relationship between
outcome and predictors.
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These findings expand upon those of Garrett [4] by further quantifying the impact of failure to adjust
for important prognostic covariates in terms of bias in the treatment estimate and subsequent implications
for power and type I error. It also provides noteworthy extensions in terms of the evaluation of different
covariate adjustment strategies (i.e. randomization versus analysis), a direct comparison with a superiority
design and the extendibility of such findings to different specifications of parameters. For example, in
addition to the strength of association between covariate and outcome, the probability of success in the
control also plays a role in the variance of the treatment estimate such that different starting points do
not translate to equivalent odds ratios. Thus, an absolute NI margin of 0.10, which we set in the NI
setting, does not always translate to a relative NI margin of 0.583, but only given an assumed probability
of success in the control of 80%. To demonstrate the sensitivity of findings, a second simulation was
undertaken in which the absolute NI margin remained 0.10, but the probabilities of success were changed
to 7o = 0.55 and 7 = 0.45 (which translates to a relative NI margin of 0.669). In this scenario, the
overall variability is increased and the impact of failure to adjust for covariates is magnified, but similar
trends were observed in all operating characteristics for the NI setting.

A limitation of this work lies in the fact that the observed differences between unadjusted and adjusted
analyses can be thought of in terms of model inconsistency. The adjusted model is a conditional or
subject-specific model, whereas the unadjusted model is a marginal or population averaged model. Thus,
one could argue that the bias illustrated in the unadjusted treatment effect estimates is actually just a
result of the difference between the two modeling strategies [21, 22]. While this is worth comment-
ing, the simulation results, as presented, retain their practical value as an explanation of the impact of
covariate adjustment.

Finally, the current research suggests that, in the context of adjusted analyses of binary outcomes,
covariate adjusted permuted block randomization may not provide much gain over simple randomiza-
tion. In fact, there were only minimal effects of balancing at randomization in the context of adjusted
analyses for any of the operating characteristics that were presented, a result that was maintained even
under a scenario in which a significant 70/30 covariate imbalance was forced (simulation not shown).
In addition, the use of covariate adjusted permuted block randomization results in a loss of randomness
via an increase in the number of deterministic assignments [23]. However, further research is required to
determine whether these findings can be generalized to other randomization schemes.

This research illustrates the impact of covariate adjustment at randomization and analysis in NI trials
with binary outcomes and demonstrates the importance of conducting adjusted analyses in the presence
of important prognostic covariates. Although we have exaggerated the covariate effect (i.e. f,), this was
performed for purely theoretical purposes. In practice, it is unlikely that one would see a covariate effect
of +/—3.0 and the resulting type I error rate of 0.175. Regardless, our results hold as we see an inflation in
the type I error when the covariate is not equal to 0; for example, a more practical case of a covariate effect
of +/—1.5 shows a type I error rate of 0.045. This suggests that a proper adjustment will result in unbiased
estimates of treatment and reduce the probability of committing a type I error, which is of particular
importance in NI trials, as claiming NI when it is false may have severe implications for patients.
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